Influences of Salinity Intrusion on Belowground Decomposition: Implications for Surface Elevation Change

Camille L. Stagg¹
Nicole Cormier¹, Ken Krauss¹, William Conner², Don Cahoon³

¹U.S. Geological Survey, National Wetlands Research Center, Lafayette, LA ²Clemson University, Baruch Institute of Coastal Ecology and Forest Science, Georgetown, SC

³U.S. Geological Survey, Patuxent Wildlife Research Center, Beltsville, MD

Study Site

Experimental Design

Salinity Gradient

Methods

Roots and Rhizomes

- Litterbags
- Labile and refractory materials
- Long-term = 1 year
- Single exponential decay model: Y= ae-kt

Cellulose

- Cotton Strips
- Labile material only
- Short-term ~ 14 days
- %Tensile strength lost

Physico-chemical Drivers of Decomposition

Temperature

- 10 cm depth
- April 2011-Ocotber 2011

Redox

- 10cm, 25cm 50 cm depth
- October 2010, 2011

Salinity

October 2010-2011, 60 cm well depth

Organic Matter Composition

- Root and Rhizomes, initial material
- Lignin, Cellulose, Total Carbon, Total Nitrogen

Depth Effect Roots and Rhizomes

Depth Effect Redox

Depth Effect Cellulose

Hydrology

Waccamaw Upper

Waccamaw Lower

Waccamaw Middle

Waccamaw Marsh

Site (Salinity) Effect Root and Rhizome Decomposition

Site (Salinity) Effect Root and Rhizome Decomposition

Physico-chemical Characteristics

Root and Rhizome Decomposition

Pearson Product-Moment Correlations	Redox Potential (mV)	Temperature (°C)	Porewater Salinity (ppt)
% Mass Remaining	r = -0.18041	r = 0.47682	r = 0.38309
	P = 0.5037	P = 0.2322	P = 0.1430

Root and Rhizome Decomposition

Root & Rhizome Chemical Composition

Site	Lignin	Cellulose	Carbon : Nitrogen	Lignin : Nitrogen
Upper	35.1 (3.9) a	20.3 (0.9) bc	44.5 (1.2) bc	35.8 (1.5) b
Middle	34.9 (0.6) a	22.4 (0.9) ab	48.7 (3.8) b	38.6 (2.9) a
Lower	26.5 (6.0) b	18.0 (1.7) c	41.1 (0.9) c	29.0 (3.4) d
Marsh	22.3 (1.3) b	24.2 (0.5) a	61.6 (2.9) a	32.0 (3.1) c

Different letters indicate significant differences between site/salinity treatments

Results Cellulose

Possible Mechanisms Stimulated Decomposition of Labile Material

- Sulfate Introduction
 - Stimulated respiration
 - C- mineralization: Weston et al., 2011; Weston et al., 2006
- Nitrogen Availability
 - Salinity-induced plant mortality or stress with subsequent nutrient pulse, or lower Nitrogen uptake and increased Nitrogen availability.

Mineralization of Soil N

Cellulose Decomposition

Pearson Product-Moment Correlations	Redox Potential (mV)	Temperature (°C)	Porewater Salinity (ppt)
CSTL day ⁻¹	r = -0.03203	r = 0.39566	r = 0.08374
	P = 0.9063	P = 0.3319	P = 0.7578

Indirect Effects

Refractory vs. Labile

Implications

Implications: Surface Elevation Change

Conclusions

- Decomposition of refractory organic matter is limited when salinity exceeds 3ppt.
- There is not effect of salinity on decomposition of refractory material between 0-3ppt
- Decomposition of labile organic matter is stimulated in the degraded forest. Stimulation may be due to nutrient pulse/ increased nutrient availability resulting from salinity-induced plant mortality or stress.
- Decomposition of labile organic matter is limited in the marsh, either from adverse impacts of salinity on microbial activity or lack of nutrient availability.
- Marsh elevation is increasing and likely due to a combination of decreased organic matter decomposition and increased primary production.

